Uniform Turán density—palette classification

Filip Kučerák

Dan Kráľ, Ander Lamaison, Gábor Tardos

Max Planck Institute for Mathematics in the Sciences Leipzig Germany

August 28, 2025

Question (Turán's Tetrahedron Problem)

What is the maximum edge density of a 3-graph on n vertices that does not contain a tetrahedron $(K_4^{(3)})$ as a subgraph?

Known

$$\frac{5}{9} \leq \pi(\textit{K}_{4}^{(3)}) \leq 0.5615$$
 (Razborov; Baber, Talbot)

Figure: Turán's construction with density $\frac{5}{9}$

Definition

For $d\in[0,1]$ and $\eta>0$ we say that 3-graph F is (d,η) -dense if for all $U\subseteq V$ the following inequality holds:

$$\left| \binom{U}{3} \cap E \right| \ge d \binom{|U|}{3} - \eta |V|^3.$$

Definition

For $d \in [0,1]$ and $\eta > 0$ we say that 3-graph F is (d,η) -dense if for all $U \subseteq V$ the following inequality holds:

$$\left| \binom{U}{3} \cap E \right| \ge d \binom{|U|}{3} - \eta |V|^3.$$

Definition

Let F be a 3-graph. We define its uniform Turán density to be

Definition

Let P be a finite set of colors. We call a subset $\mathcal{P}\subseteq P^3$ a coloring palette.

Example

Let $P = \{ \text{ red}, \text{green}, \text{blue} \}$ and $\mathcal{P} = \{ \text{ (red}, \text{green}, \text{blue}) \}$

Definition

We say that 3-graph F is \mathcal{P} -colorable if there exists an ordering \prec of the vertex set of F and an assignment $\varphi:\partial F\to P$ with the property that for all $uvw\in E(F)$ with $u\prec v\prec w$ it holds that

$$(\varphi(uv), \varphi(uw), \varphi(vw)) \in \mathcal{P}.$$

Theorem (Lamaison 2024)

Let F be a 3-graph. Then,

$$\pi_u(F) = \sup \{\lambda(\mathcal{P}) \mid \mathcal{P} \text{ does not color } F\}.$$

Theorem (Lamaison 2024)

Let F be a 3-graph. Then,

$$\pi_u(F) = \sup \{\lambda(\mathcal{P}) \mid \mathcal{P} \text{ does not color } F\}.$$

Definition

Let $\mathcal P$ and $\mathcal R$ be two palettes. We say that a color map $\psi:P\to R$ is a palette homomorphism if for every $p_1,p_2,p_3\in P$ it holds that

$$(p_1, p_2, p_3) \in \mathcal{P} \implies (\psi(p_1), \psi(p_2), \psi(p_3)) \in \mathcal{R}.$$

Let $\mathcal U$ be a palette such that for every palette $\mathcal P$ with $\lambda(\mathcal P) \geq d$ there is a homomorphism from $\mathcal U$ to $\mathcal P$ or to inv $(\mathcal P)$. If 3-graph F is $\mathcal U$ -colorable, then $\pi_u(F) \leq d$.

Let \mathcal{U} be a palette such that for every palette \mathcal{P} with $\lambda(\mathcal{P}) \geq d$ there is a homomorphism from \mathcal{U} to \mathcal{P} or to inv (\mathcal{P}) . If 3-graph Fis \mathcal{U} -colorable, then $\pi_{\mu}(F) \leq d$.

Proof.

Let \mathcal{P} be palette by which F is not colorable and $\pi_u(F) > d$, then there is a homomorphism $\psi: \mathcal{U} \to \mathcal{P}$ and coloring $\varphi: \partial F \to \mathcal{U}$.

But $\psi \varphi : \partial F \to \mathcal{P}$ is a \mathcal{P} -coloring of F.

Theorem (Reiher, Rödl, Schacht 2017)

There is no 3-graph F with $\pi_u(F) \in (0, 1/27)$.

Theorem (Reiher, Rödl, Schacht 2017) There is no 3-graph F with $\pi_u(F) \in (0, 1/27)$.

Theorem (Garbe, Kráľ, Lamaison 2023) There exists a 3-graph F with $\pi_u(F) = 1/27$.

Theorem (Reiher, Rödl, Schacht 2017)

There is no 3-graph F with $\pi_{u}(F) \in (0, 1/27)$.

Theorem (Garbe, Kráľ, Lamaison 2023)

There exists a 3-graph F with $\pi_u(F) = 1/27$.

Theorem (Garbe, Iľkovič, Kráľ, K., Lamaison 2024+)

There exists a 3-graph F with $\pi_u(F) = 8/27$.

Let $\mathcal L$ and $\mathcal U$ be two palettes. There exists a 3-graph H that is $\mathcal U$ -colorable but not $\mathcal L$ -colorable if and only if there is no homomorphism from the palette $\mathcal U$ to the palette $\mathcal L$ or $\operatorname{inv}(\mathcal L)$.

Let $\mathcal L$ and $\mathcal U$ be two palettes. There exists a 3-graph H that is $\mathcal U$ -colorable but not $\mathcal L$ -colorable if and only if there is no homomorphism from the palette $\mathcal U$ to the palette $\mathcal L$ or $\operatorname{inv}(\mathcal L)$.

Theorem (King, Piga, Sales, Schülke 2025+)

For every \mathcal{P} , there is a finite family \mathcal{F} of 3-graphs with $\pi_{u}(\mathcal{F}) = \lambda(\mathcal{P})$.

Let $\mathcal L$ and $\mathcal U$ be two palettes. There exists a 3-graph H that is $\mathcal U$ -colorable but not $\mathcal L$ -colorable if and only if there is no homomorphism from the palette $\mathcal U$ to the palette $\mathcal L$ or $\operatorname{inv}(\mathcal L)$.

Theorem (King, Piga, Sales, Schülke 2025+)

For every \mathcal{P} , there is a finite family \mathcal{F} of 3-graphs with $\pi_{u}(\mathcal{F}) = \lambda(\mathcal{P})$.

Proposition

Let $\mathcal U$ be a palette such that for every palette $\mathcal P$ with $\lambda(\mathcal P) \geq d$ there is a homomorphism from $\mathcal U$ to $\mathcal P$ or to $\mathsf{inv}(\mathcal P)$. If 3-graph $\mathcal U$ is $\mathcal U$ -colorable, then $\pi_u(\mathcal H) \leq d$.

Let $\mathcal{U}_1,...,\mathcal{U}_k$ be a collection of palettes such that for every palette \mathcal{P} with $\lambda(\mathcal{P}) \geq d$ there is for some $i \in [k]$ a homomorphism from \mathcal{U}_i to \mathcal{P} or $inv(\mathcal{P})$. If 3-graph H is \mathcal{U}_i -colorable for every $i \in [k]$, then $\pi_u(H) \leq d$.

Let $\mathcal{U}_1,...,\mathcal{U}_k$ be a collection of palettes such that for every palette \mathcal{P} with $\lambda(\mathcal{P}) \geq d$ there is for some $i \in [k]$ a homomorphism from \mathcal{U}_i to \mathcal{P} or $inv(\mathcal{P})$. If 3-graph H is \mathcal{U}_i -colorable for every $i \in [k]$, then $\pi_u(H) \leq d$.

Theorem (Kráľ, K., Lamaison, Tardos 2025+)

Let $\mathcal{U}_1,...,\mathcal{U}_k$ and \mathcal{L} be palettes. There exists a 3-graph H that is \mathcal{U}_1 -colorable, ..., \mathcal{U}_k -colorable but not \mathcal{L} -colorable if and only if for every $i \in [k]$ there is no homomorphism from $\mathcal{U}_i \times \prod_{j \neq i} \mathcal{U}_j^{(s)}$ to \mathcal{L} or $inv(\mathcal{L})$.

Let $\mathcal{U}_1,...,\mathcal{U}_k$ be a collection of palettes such that for every palette \mathcal{P} with $\lambda(\mathcal{P}) \geq d$ there is for some $i \in [k]$ a homomorphism from \mathcal{U}_i to \mathcal{P} or $inv(\mathcal{P})$. If 3-graph H is \mathcal{U}_i -colorable for every $i \in [k]$, then $\pi_u(H) \leq d$.

Theorem (Kráľ, K., Lamaison, Tardos 2025+)

Let $\mathcal{U}_1,...,\mathcal{U}_k$ and \mathcal{L} be palettes. There exists a 3-graph H that is \mathcal{U}_1 -colorable, ..., \mathcal{U}_k -colorable but not \mathcal{L} -colorable if and only if for every $i \in [k]$ there is no homomorphism from $\mathcal{U}_i \times \prod_{j \neq i} \mathcal{U}_j^{(s)}$ to \mathcal{L} or $inv(\mathcal{L})$.

1. Choice of $p(\bullet)=1/3$, $p(\bullet)=p(\bullet)=p(\bullet)=2/9$ for palette $\mathcal L$ gives $\lambda(\mathcal L)\geq 4/81$.

- 1. Choice of $p(\bullet) = 1/3$, $p(\bullet) = p(\bullet) = p(\bullet) = 2/9$ for palette \mathcal{L} gives $\lambda(\mathcal{L}) \ge 4/81$.
- 2. For every \mathcal{P} with $\lambda(\mathcal{P}) \geq 4/81$, we have a homomorphism from \mathcal{U}_1 or from $\text{inv}(\mathcal{U}_2)$ to \mathcal{P} or $\text{inv}(\mathcal{P})$.

- 1. Choice of $p(\bullet) = 1/3$, $p(\bullet) = p(\bullet) = p(\bullet) = 2/9$ for palette \mathcal{L} gives $\lambda(\mathcal{L}) > 4/81$.
- 2. For every \mathcal{P} with $\lambda(\mathcal{P}) \geq 4/81$, we have a homomorphism from \mathcal{U}_1 or from $\mathrm{inv}(\mathcal{U}_2)$ to \mathcal{P} or $\mathrm{inv}(\mathcal{P})$.
- 3. There is no homomorphism from $\mathcal{U}_1 \times \mathcal{U}_2^{(s)}$ or from $\mathcal{U}_1^{(s)} \times \mathcal{U}_2$ to \mathcal{L} .

There exists a 3-graph F with $\pi_u(F) = 4/81$.

Theorem (Lamaison, Wu 2025++)

For every integer d, there exists a 3-graph F with $\pi_u(F) = \alpha$, where the minimal polynomial of α has degree at least d.

Let $\mathcal L$ and $\mathcal U$ be two palettes. Every $\mathcal U$ -colorable is $\mathcal L$ -colorable if and only if there exists a homomorphism from $\mathcal U$ to $\mathcal L$ or $\mathsf{inv}(\mathcal L)$.

Let $\mathcal L$ and $\mathcal U$ be two palettes. Every $\mathcal U$ -colorable is $\mathcal L$ -colorable if and only if there exists a homomorphism from $\mathcal U$ to $\mathcal L$ or $\mathsf{inv}(\mathcal L)$.

$$(\Longrightarrow)$$

As there is a homomorphism $\mathcal{U}\to\mathcal{L}$, every \mathcal{U} -colorable 3-graph is also \mathcal{L} -colorable.

Let $\mathcal L$ and $\mathcal U$ be two palettes. Every $\mathcal U$ -colorable is $\mathcal L$ -colorable if and only if there exists a homomorphism from $\mathcal U$ to $\mathcal L$ or $\mathsf{inv}(\mathcal L)$.

$$(\Longrightarrow)$$

As there is a homomorphism $\mathcal{U}\to\mathcal{L}$, every \mathcal{U} -colorable 3-graph is also \mathcal{L} -colorable.

$$(\Leftarrow =)$$

Let $\mathcal L$ and $\mathcal U$ be two palettes. Every $\mathcal U$ -colorable is $\mathcal L$ -colorable if and only if there exists a homomorphism from $\mathcal U$ to $\mathcal L$ or $\mathsf{inv}(\mathcal L)$.

$$(\Longrightarrow)$$

As there is a homomorphism $\mathcal{U}\to\mathcal{L}$, every \mathcal{U} -colorable 3-graph is also \mathcal{L} -colorable.

- 1. If every ordered 3-graph that is \mathcal{U} -colorable is also \mathcal{L} -colorable, there is a homomorphism $\mathcal{U} \to \mathcal{L}$.
- 2. If every \mathcal{U} -colorable graph is \mathcal{L} -colorable, then either every ordered \mathcal{U} -colorable 3-graph is \mathcal{L} -colorable or every ordered \mathcal{U} -colorable 3-graph is inv(\mathcal{L})-colorable.

If every ordered \mathcal{U} -colorable 3-graph is also \mathcal{L} -colorable, there is a homomorphism $\mathcal{U} \to \mathcal{L}$.

1. Create random ordered $\mathcal{U}\text{-colorable}$ graph H which is $\mathcal{L}\text{-colorable}$ by assumption.

- 1. Create random ordered \mathcal{U} -colorable graph H which is \mathcal{L} -colorable by assumption.
- 2. Boundary of every edge is colored by a triple from \mathcal{U} and triple from \mathcal{L} .

- 1. Create random ordered \mathcal{U} -colorable graph H which is \mathcal{L} -colorable by assumption.
- 2. Boundary of every edge is colored by a triple from $\mathcal U$ and triple from $\mathcal L$.
- 3. Use regularity to partition a subgraph of H into bipartite graphs regular w.r.t. to each pair of an old color and new color.

- 1. Create random ordered \mathcal{U} -colorable graph H which is \mathcal{L} -colorable by assumption.
- 2. Boundary of every edge is colored by a triple from $\mathcal U$ and triple from $\mathcal L$.
- 3. Use regularity to partition a subgraph of H into bipartite graphs regular w.r.t. to each pair of an old color and new color.
- 4. To each bipartite graph associate a color mapping by voting.

- 1. Create random ordered \mathcal{U} -colorable graph H which is \mathcal{L} -colorable by assumption.
- 2. Boundary of every edge is colored by a triple from $\mathcal U$ and triple from $\mathcal L$.
- 3. Use regularity to partition a subgraph of H into bipartite graphs regular w.r.t. to each pair of an old color and new color.
- 4. To each bipartite graph associate a color mapping by voting.
- 5. Use Ramsey's Theorem to obtain a tripartite graph where all color mappings agree.

- 1. Create random ordered \mathcal{U} -colorable graph H which is \mathcal{L} -colorable by assumption.
- 2. Boundary of every edge is colored by a triple from $\mathcal U$ and triple from $\mathcal L$.
- 3. Use regularity to partition a subgraph of H into bipartite graphs regular w.r.t. to each pair of an old color and new color.
- 4. To each bipartite graph associate a color mapping by voting.
- 5. Use Ramsey's Theorem to obtain a tripartite graph where all color mappings agree.
- 6. Use regularity of the tripartite graphs to conclude that the color mapping is a homomorphism.