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On the last episode...



Question (Turán’s Tetrahedron Problem)
What is the maximum edge density of a 3-graph on n vertices that
does not contain a tetrahedron (K (3)

4 ) as a subgraph?

Known
5
9 ≤ π(K (3)

4 ) ≤ 0.5615 (Razborov; Baber, Talbot)

Figure: Turán’s construction with density 5
9



Definition
For d ∈ [0, 1] and η > 0 we say that 3-graph F is (d , η)-dense if
for all U ⊆ V the following inequality holds:∣∣∣∣(U

3

)
∩ E

∣∣∣∣ ≥ d
(
|U|
3

)
− η|V |3.

Definition
Let F be a 3-graph. We define its uniform Turán density to be

πu(F ) = sup
{

d ∈ [0, 1] : for every η > 0 and n ∈ N, there exists

an F -free (d , η)-dense 3-graph H

of order at least n
}
.
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Definition
Let P be a finite set of colors. We call a subset P ⊆ P3 a coloring
palette.

Example
Let P = { red , green, blue } and P = { (red , green, blue) }

Definition
We say that 3-graph F is P-colorable if there exists an ordering ≺
of the vertex set of F and an assignment ϕ : ∂F → P with the
property that for all uvw ∈ E(F ) with u ≺ v ≺ w it holds that

(ϕ(uv), ϕ(uw), ϕ(vw)) ∈ P.



Proposition
Let F be a 3-graph and L be a palette. If F is not L-colorable,
then πu(F ) ≥ λ(L).
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Theorem (Lamaison 2024)
Let F be a 3-graph. Then,

πu(F ) = sup
{
λ(P) | P does not color F

}
.

Definition
Let P and R be two palettes. We say that a color map ψ : P → R
is a palette homomorphism if for every p1, p2, p3 ∈ P it holds that

(p1, p2, p3) ∈ P =⇒ (ψ(p1), ψ(p2), ψ(p3)) ∈ R.
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Proposition
Let U be a palette such that for every palette P with λ(P) ≥ d
there is a homomorphism from U to P or to inv(P). If 3-graph F
is U-colorable, then πu(F ) ≤ d.

Proof.
Let P be palette by which F is not colorable and πu(F ) > d , then
there is a homomorphism ψ : U → P and coloring ϕ : ∂F → U .
But ψϕ : ∂F → P is a P-coloring of F .
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Theorem (Reiher, Rödl, Schacht 2017)
There is no 3-graph F with πu(F ) ∈ (0, 1/27).

Theorem (Garbe, Kráľ, Lamaison 2023)
There exists a 3-graph F with πu(F ) = 1/27.

Theorem (Garbe, Iľkovič, Kráľ, K., Lamaison 2024+)
There exists a 3-graph F with πu(F ) = 8/27.
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Theorem (Kráľ, K., Lamaison, Tardos 2025+)
Let L and U be two palettes. There exists a 3-graph H that is
U-colorable but not L-colorable if and only if there is no
homomorphism from the palette U to the palette L or inv(L).

Theorem (King, Piga, Sales, Schülke 2025+)
For every P, there is a finite family F of 3-graphs with
πu(F) = λ(P).

Proposition
Let U be a palette such that for every palette P with λ(P) ≥ d
there is a homomorphism from U to P or to inv(P). If 3-graph H
is U-colorable, then πu(H) ≤ d.
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Proposition
Let U1, ...,Uk be a collection of palettes such that for every palette
P with λ(P) ≥ d there is for some i ∈ [k] a homomorphism from
Ui to P or inv(P). If 3-graph H is Ui -colorable for every i ∈ [k],
then πu(H) ≤ d.
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every i ∈ [k] there is no homomorphism from Ui ×

∏
j 6=i U

(s)
j to L

or inv(L).

P P(s)
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L :

U1 :

U2 :

1. Choice of p(•) = 1/3, p(•) = p(•) = p(•) = 2/9 for palette
L gives λ(L) ≥ 4/81.

2. For every P with λ(P) ≥ 4/81, we have a homomorphism
from U1 or from inv(U2) to P or inv(P).

3. There is no homomorphism from U1 × U (s)
2 or from U (s)

1 × U2

to L.
There exists a 3-graph F with πu(F ) = 4/81.
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Theorem (Lamaison, Wu 2025++)
For every integer d, there exists a 3-graph F with πu(F ) = α,
where the minimal polynomial of α has degree at least d.



Thank you for your attention!



Theorem (Kráľ, K., Lamaison, Tardos 2025+)
Let L and U be two palettes. Every U-colorable is L-colorable if
and only if there exists a homomorphism from U to L or inv(L).

(=⇒)

As there is a homomorphism U → L, every U-colorable 3-graph is
also L-colorable.

(⇐=)

1. If every ordered 3-graph that is U-colorable is also
L-colorable, there is a homomorphism U → L.

2. If every U-colorable graph is L-colorable, then either every
ordered U-colorable 3-graph is L-colorable or every ordered
U-colorable 3-graph is inv(L)-colorable.
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Lemma
If every ordered U-colorable 3-graph is also L-colorable, there is a
homomorphism U → L.

1. Create random ordered U-colorable graph H which is
L-colorable by assumption.

2. Boundary of every edge is colored by a triple from U and triple
from L.
3. Use regularity to partition a subgraph of H into bipartite graphs
regular w.r.t. to each pair of an old color and new color.
4. To each bipartite graph associate a color mapping by voting.
5. Use Ramsey’s Theorem to obtain a tripartite graph where all
color mappings agree.
6. Use regularity of the tripartite graphs to conclude that the color
mapping is a homomorphism.
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