Uniform Turán density—palette classification Filip Kučerák Dan Kráľ, Ander Lamaison, Gábor Tardos Max Planck Institute for Mathematics in the Sciences Leipzig Germany August 28, 2025 # Question (Turán's Tetrahedron Problem) What is the maximum edge density of a 3-graph on n vertices that does not contain a tetrahedron $(K_4^{(3)})$ as a subgraph? #### Known $$\frac{5}{9} \leq \pi(\textit{K}_{4}^{(3)}) \leq 0.5615$$ (Razborov; Baber, Talbot) Figure: Turán's construction with density $\frac{5}{9}$ #### Definition For $d\in[0,1]$ and $\eta>0$ we say that 3-graph F is (d,η) -dense if for all $U\subseteq V$ the following inequality holds: $$\left| \binom{U}{3} \cap E \right| \ge d \binom{|U|}{3} - \eta |V|^3.$$ #### Definition For $d \in [0,1]$ and $\eta > 0$ we say that 3-graph F is (d,η) -dense if for all $U \subseteq V$ the following inequality holds: $$\left| \binom{U}{3} \cap E \right| \ge d \binom{|U|}{3} - \eta |V|^3.$$ #### Definition Let F be a 3-graph. We define its uniform Turán density to be #### Definition Let P be a finite set of colors. We call a subset $\mathcal{P}\subseteq P^3$ a coloring palette. ### Example Let $P = \{ \text{ red}, \text{green}, \text{blue} \}$ and $\mathcal{P} = \{ \text{ (red}, \text{green}, \text{blue}) \}$ #### Definition We say that 3-graph F is \mathcal{P} -colorable if there exists an ordering \prec of the vertex set of F and an assignment $\varphi:\partial F\to P$ with the property that for all $uvw\in E(F)$ with $u\prec v\prec w$ it holds that $$(\varphi(uv), \varphi(uw), \varphi(vw)) \in \mathcal{P}.$$ # Theorem (Lamaison 2024) Let F be a 3-graph. Then, $$\pi_u(F) = \sup \{\lambda(\mathcal{P}) \mid \mathcal{P} \text{ does not color } F\}.$$ # Theorem (Lamaison 2024) Let F be a 3-graph. Then, $$\pi_u(F) = \sup \{\lambda(\mathcal{P}) \mid \mathcal{P} \text{ does not color } F\}.$$ #### Definition Let $\mathcal P$ and $\mathcal R$ be two palettes. We say that a color map $\psi:P\to R$ is a palette homomorphism if for every $p_1,p_2,p_3\in P$ it holds that $$(p_1, p_2, p_3) \in \mathcal{P} \implies (\psi(p_1), \psi(p_2), \psi(p_3)) \in \mathcal{R}.$$ Let $\mathcal U$ be a palette such that for every palette $\mathcal P$ with $\lambda(\mathcal P) \geq d$ there is a homomorphism from $\mathcal U$ to $\mathcal P$ or to inv $(\mathcal P)$. If 3-graph F is $\mathcal U$ -colorable, then $\pi_u(F) \leq d$. Let \mathcal{U} be a palette such that for every palette \mathcal{P} with $\lambda(\mathcal{P}) \geq d$ there is a homomorphism from \mathcal{U} to \mathcal{P} or to inv (\mathcal{P}) . If 3-graph Fis \mathcal{U} -colorable, then $\pi_{\mu}(F) \leq d$. ### Proof. Let \mathcal{P} be palette by which F is not colorable and $\pi_u(F) > d$, then there is a homomorphism $\psi: \mathcal{U} \to \mathcal{P}$ and coloring $\varphi: \partial F \to \mathcal{U}$. But $\psi \varphi : \partial F \to \mathcal{P}$ is a \mathcal{P} -coloring of F. # Theorem (Reiher, Rödl, Schacht 2017) There is no 3-graph F with $\pi_u(F) \in (0, 1/27)$. # Theorem (Reiher, Rödl, Schacht 2017) There is no 3-graph F with $\pi_u(F) \in (0, 1/27)$. Theorem (Garbe, Kráľ, Lamaison 2023) There exists a 3-graph F with $\pi_u(F) = 1/27$. # Theorem (Reiher, Rödl, Schacht 2017) There is no 3-graph F with $\pi_{u}(F) \in (0, 1/27)$. # Theorem (Garbe, Kráľ, Lamaison 2023) There exists a 3-graph F with $\pi_u(F) = 1/27$. Theorem (Garbe, Iľkovič, Kráľ, K., Lamaison 2024+) There exists a 3-graph F with $\pi_u(F) = 8/27$. Let $\mathcal L$ and $\mathcal U$ be two palettes. There exists a 3-graph H that is $\mathcal U$ -colorable but not $\mathcal L$ -colorable if and only if there is no homomorphism from the palette $\mathcal U$ to the palette $\mathcal L$ or $\operatorname{inv}(\mathcal L)$. Let $\mathcal L$ and $\mathcal U$ be two palettes. There exists a 3-graph H that is $\mathcal U$ -colorable but not $\mathcal L$ -colorable if and only if there is no homomorphism from the palette $\mathcal U$ to the palette $\mathcal L$ or $\operatorname{inv}(\mathcal L)$. Theorem (King, Piga, Sales, Schülke 2025+) For every \mathcal{P} , there is a finite family \mathcal{F} of 3-graphs with $\pi_{u}(\mathcal{F}) = \lambda(\mathcal{P})$. Let $\mathcal L$ and $\mathcal U$ be two palettes. There exists a 3-graph H that is $\mathcal U$ -colorable but not $\mathcal L$ -colorable if and only if there is no homomorphism from the palette $\mathcal U$ to the palette $\mathcal L$ or $\operatorname{inv}(\mathcal L)$. # Theorem (King, Piga, Sales, Schülke 2025+) For every \mathcal{P} , there is a finite family \mathcal{F} of 3-graphs with $\pi_{u}(\mathcal{F}) = \lambda(\mathcal{P})$. ### Proposition Let $\mathcal U$ be a palette such that for every palette $\mathcal P$ with $\lambda(\mathcal P) \geq d$ there is a homomorphism from $\mathcal U$ to $\mathcal P$ or to $\mathsf{inv}(\mathcal P)$. If 3-graph $\mathcal U$ is $\mathcal U$ -colorable, then $\pi_u(\mathcal H) \leq d$. Let $\mathcal{U}_1,...,\mathcal{U}_k$ be a collection of palettes such that for every palette \mathcal{P} with $\lambda(\mathcal{P}) \geq d$ there is for some $i \in [k]$ a homomorphism from \mathcal{U}_i to \mathcal{P} or $inv(\mathcal{P})$. If 3-graph H is \mathcal{U}_i -colorable for every $i \in [k]$, then $\pi_u(H) \leq d$. Let $\mathcal{U}_1,...,\mathcal{U}_k$ be a collection of palettes such that for every palette \mathcal{P} with $\lambda(\mathcal{P}) \geq d$ there is for some $i \in [k]$ a homomorphism from \mathcal{U}_i to \mathcal{P} or $inv(\mathcal{P})$. If 3-graph H is \mathcal{U}_i -colorable for every $i \in [k]$, then $\pi_u(H) \leq d$. # Theorem (Kráľ, K., Lamaison, Tardos 2025+) Let $\mathcal{U}_1,...,\mathcal{U}_k$ and \mathcal{L} be palettes. There exists a 3-graph H that is \mathcal{U}_1 -colorable, ..., \mathcal{U}_k -colorable but not \mathcal{L} -colorable if and only if for every $i \in [k]$ there is no homomorphism from $\mathcal{U}_i \times \prod_{j \neq i} \mathcal{U}_j^{(s)}$ to \mathcal{L} or $inv(\mathcal{L})$. Let $\mathcal{U}_1,...,\mathcal{U}_k$ be a collection of palettes such that for every palette \mathcal{P} with $\lambda(\mathcal{P}) \geq d$ there is for some $i \in [k]$ a homomorphism from \mathcal{U}_i to \mathcal{P} or $inv(\mathcal{P})$. If 3-graph H is \mathcal{U}_i -colorable for every $i \in [k]$, then $\pi_u(H) \leq d$. # Theorem (Kráľ, K., Lamaison, Tardos 2025+) Let $\mathcal{U}_1,...,\mathcal{U}_k$ and \mathcal{L} be palettes. There exists a 3-graph H that is \mathcal{U}_1 -colorable, ..., \mathcal{U}_k -colorable but not \mathcal{L} -colorable if and only if for every $i \in [k]$ there is no homomorphism from $\mathcal{U}_i \times \prod_{j \neq i} \mathcal{U}_j^{(s)}$ to \mathcal{L} or $inv(\mathcal{L})$. 1. Choice of $p(\bullet)=1/3$, $p(\bullet)=p(\bullet)=p(\bullet)=2/9$ for palette $\mathcal L$ gives $\lambda(\mathcal L)\geq 4/81$. - 1. Choice of $p(\bullet) = 1/3$, $p(\bullet) = p(\bullet) = p(\bullet) = 2/9$ for palette \mathcal{L} gives $\lambda(\mathcal{L}) \ge 4/81$. - 2. For every \mathcal{P} with $\lambda(\mathcal{P}) \geq 4/81$, we have a homomorphism from \mathcal{U}_1 or from $\text{inv}(\mathcal{U}_2)$ to \mathcal{P} or $\text{inv}(\mathcal{P})$. - 1. Choice of $p(\bullet) = 1/3$, $p(\bullet) = p(\bullet) = p(\bullet) = 2/9$ for palette \mathcal{L} gives $\lambda(\mathcal{L}) > 4/81$. - 2. For every \mathcal{P} with $\lambda(\mathcal{P}) \geq 4/81$, we have a homomorphism from \mathcal{U}_1 or from $\mathrm{inv}(\mathcal{U}_2)$ to \mathcal{P} or $\mathrm{inv}(\mathcal{P})$. - 3. There is no homomorphism from $\mathcal{U}_1 \times \mathcal{U}_2^{(s)}$ or from $\mathcal{U}_1^{(s)} \times \mathcal{U}_2$ to \mathcal{L} . There exists a 3-graph F with $\pi_u(F) = 4/81$. # Theorem (Lamaison, Wu 2025++) For every integer d, there exists a 3-graph F with $\pi_u(F) = \alpha$, where the minimal polynomial of α has degree at least d. Let $\mathcal L$ and $\mathcal U$ be two palettes. Every $\mathcal U$ -colorable is $\mathcal L$ -colorable if and only if there exists a homomorphism from $\mathcal U$ to $\mathcal L$ or $\mathsf{inv}(\mathcal L)$. Let $\mathcal L$ and $\mathcal U$ be two palettes. Every $\mathcal U$ -colorable is $\mathcal L$ -colorable if and only if there exists a homomorphism from $\mathcal U$ to $\mathcal L$ or $\mathsf{inv}(\mathcal L)$. $$(\Longrightarrow)$$ As there is a homomorphism $\mathcal{U}\to\mathcal{L}$, every \mathcal{U} -colorable 3-graph is also \mathcal{L} -colorable. Let $\mathcal L$ and $\mathcal U$ be two palettes. Every $\mathcal U$ -colorable is $\mathcal L$ -colorable if and only if there exists a homomorphism from $\mathcal U$ to $\mathcal L$ or $\mathsf{inv}(\mathcal L)$. $$(\Longrightarrow)$$ As there is a homomorphism $\mathcal{U}\to\mathcal{L}$, every \mathcal{U} -colorable 3-graph is also \mathcal{L} -colorable. $$(\Leftarrow =)$$ Let $\mathcal L$ and $\mathcal U$ be two palettes. Every $\mathcal U$ -colorable is $\mathcal L$ -colorable if and only if there exists a homomorphism from $\mathcal U$ to $\mathcal L$ or $\mathsf{inv}(\mathcal L)$. $$(\Longrightarrow)$$ As there is a homomorphism $\mathcal{U}\to\mathcal{L}$, every \mathcal{U} -colorable 3-graph is also \mathcal{L} -colorable. - 1. If every ordered 3-graph that is \mathcal{U} -colorable is also \mathcal{L} -colorable, there is a homomorphism $\mathcal{U} \to \mathcal{L}$. - 2. If every \mathcal{U} -colorable graph is \mathcal{L} -colorable, then either every ordered \mathcal{U} -colorable 3-graph is \mathcal{L} -colorable or every ordered \mathcal{U} -colorable 3-graph is inv(\mathcal{L})-colorable. If every ordered \mathcal{U} -colorable 3-graph is also \mathcal{L} -colorable, there is a homomorphism $\mathcal{U} \to \mathcal{L}$. 1. Create random ordered $\mathcal{U}\text{-colorable}$ graph H which is $\mathcal{L}\text{-colorable}$ by assumption. - 1. Create random ordered \mathcal{U} -colorable graph H which is \mathcal{L} -colorable by assumption. - 2. Boundary of every edge is colored by a triple from \mathcal{U} and triple from \mathcal{L} . - 1. Create random ordered \mathcal{U} -colorable graph H which is \mathcal{L} -colorable by assumption. - 2. Boundary of every edge is colored by a triple from $\mathcal U$ and triple from $\mathcal L$. - 3. Use regularity to partition a subgraph of H into bipartite graphs regular w.r.t. to each pair of an old color and new color. - 1. Create random ordered \mathcal{U} -colorable graph H which is \mathcal{L} -colorable by assumption. - 2. Boundary of every edge is colored by a triple from $\mathcal U$ and triple from $\mathcal L$. - 3. Use regularity to partition a subgraph of H into bipartite graphs regular w.r.t. to each pair of an old color and new color. - 4. To each bipartite graph associate a color mapping by voting. - 1. Create random ordered \mathcal{U} -colorable graph H which is \mathcal{L} -colorable by assumption. - 2. Boundary of every edge is colored by a triple from $\mathcal U$ and triple from $\mathcal L$. - 3. Use regularity to partition a subgraph of H into bipartite graphs regular w.r.t. to each pair of an old color and new color. - 4. To each bipartite graph associate a color mapping by voting. - 5. Use Ramsey's Theorem to obtain a tripartite graph where all color mappings agree. - 1. Create random ordered \mathcal{U} -colorable graph H which is \mathcal{L} -colorable by assumption. - 2. Boundary of every edge is colored by a triple from $\mathcal U$ and triple from $\mathcal L$. - 3. Use regularity to partition a subgraph of H into bipartite graphs regular w.r.t. to each pair of an old color and new color. - 4. To each bipartite graph associate a color mapping by voting. - 5. Use Ramsey's Theorem to obtain a tripartite graph where all color mappings agree. - 6. Use regularity of the tripartite graphs to conclude that the color mapping is a homomorphism.